Extensions 1→N→G→Q→1 with N=D30 and Q=C22

Direct product G=N×Q with N=D30 and Q=C22
dρLabelID
C23×D15120C2^3xD15240,207

Semidirect products G=N:Q with N=D30 and Q=C22
extensionφ:Q→Out NdρLabelID
D301C22 = D5×D12φ: C22/C1C22 ⊆ Out D30604+D30:1C2^2240,136
D302C22 = S3×D20φ: C22/C1C22 ⊆ Out D30604+D30:2C2^2240,137
D303C22 = D5×C3⋊D4φ: C22/C1C22 ⊆ Out D30604D30:3C2^2240,149
D304C22 = S3×C5⋊D4φ: C22/C1C22 ⊆ Out D30604D30:4C2^2240,150
D305C22 = C2×D60φ: C22/C2C2 ⊆ Out D30120D30:5C2^2240,177
D306C22 = D4×D15φ: C22/C2C2 ⊆ Out D30604+D30:6C2^2240,179
D307C22 = C2×C157D4φ: C22/C2C2 ⊆ Out D30120D30:7C2^2240,184
D308C22 = C2×C3⋊D20φ: C22/C2C2 ⊆ Out D30120D30:8C2^2240,146
D309C22 = C2×C5⋊D12φ: C22/C2C2 ⊆ Out D30120D30:9C2^2240,147
D3010C22 = D10⋊D6φ: C22/C2C2 ⊆ Out D30604+D30:10C2^2240,151
D3011C22 = C22×S3×D5φ: C22/C2C2 ⊆ Out D3060D30:11C2^2240,202

Non-split extensions G=N.Q with N=D30 and Q=C22
extensionφ:Q→Out NdρLabelID
D30.1C22 = D60⋊C2φ: C22/C1C22 ⊆ Out D301204+D30.1C2^2240,130
D30.2C22 = C12.28D10φ: C22/C1C22 ⊆ Out D301204+D30.2C2^2240,134
D30.3C22 = Dic5.D6φ: C22/C1C22 ⊆ Out D301204D30.3C2^2240,140
D30.4C22 = Dic3.D10φ: C22/C1C22 ⊆ Out D301204D30.4C2^2240,143
D30.5C22 = D6011C2φ: C22/C2C2 ⊆ Out D301202D30.5C2^2240,178
D30.6C22 = D42D15φ: C22/C2C2 ⊆ Out D301204-D30.6C2^2240,180
D30.7C22 = Q83D15φ: C22/C2C2 ⊆ Out D301204+D30.7C2^2240,182
D30.8C22 = D20⋊S3φ: C22/C2C2 ⊆ Out D301204D30.8C2^2240,127
D30.9C22 = D12⋊D5φ: C22/C2C2 ⊆ Out D301204D30.9C2^2240,129
D30.10C22 = D15⋊Q8φ: C22/C2C2 ⊆ Out D301204D30.10C2^2240,131
D30.11C22 = D6.D10φ: C22/C2C2 ⊆ Out D301204D30.11C2^2240,132
D30.12C22 = C4×S3×D5φ: C22/C2C2 ⊆ Out D30604D30.12C2^2240,135
D30.13C22 = C20⋊D6φ: C22/C2C2 ⊆ Out D30604D30.13C2^2240,138
D30.14C22 = C2×D30.C2φ: C22/C2C2 ⊆ Out D30120D30.14C2^2240,144
D30.15C22 = C2×C4×D15φ: trivial image120D30.15C2^2240,176
D30.16C22 = Q8×D15φ: trivial image1204-D30.16C2^2240,181

׿
×
𝔽